Commit 6ffe7cfe by rabgra

### additional modifications to make mood work

parent 62e7118a
 ... @@ -35,22 +35,28 @@ MODULE quickhull ... @@ -35,22 +35,28 @@ MODULE quickhull PUBLIC:: test_quick PUBLIC:: test_quick REAL(DP), PARAMETER:: tol=-SQRT(EPSILON(0.0_dp)) REAL(DP), PARAMETER:: tol=-SQRT(EPSILON(0.0_dp)) REAL(dp), PARAMETER:: tol_hull=1.e-4_dp!0._dp!-epsilon(0.0_dp) REAL(dp), PARAMETER:: tol_hull=1.e-4_dp!0._dp!-epsilon(0.0_dp) real(dp), parameter:: infty=huge(1._dp) CONTAINS CONTAINS SUBROUTINE tri(x,y) SUBROUTINE tri(x,y) IMPLICIT NONE IMPLICIT NONE REAL(DP), DIMENSION(:,:), INTENT(in) :: x REAL(DP), DIMENSION(:,:), INTENT(in) :: x REAL(DP), DIMENSION(:,:), INTENT(out) :: y REAL(DP), DIMENSION(:,:), INTENT(out) :: y REAL(DP), DIMENSION(2, SIZE(x, dim=2)):: buff REAL(DP), DIMENSION(2, SIZE(x, dim=2)):: buff, buf LOGICAL, DIMENSION(SIZE(x,dim=2)) :: ind LOGICAL, DIMENSION(SIZE(x,dim=2)) :: ind INTEGER :: m, j, k, i INTEGER :: m, j, k, i m=SIZE(x,dim=2) m=SIZE(x,dim=2) buf=x do i=1, m if (abs(x(1,i))>infty) buf(1,i)=Huge(1._dp) if (abs(x(2,i))>infty) buf(2,i)=Huge(1._dp) enddo ind=.TRUE. ind=.TRUE. k=0 k=0 DO i=1, m DO i=1, m j=MINLOC(x(1,:),1, ind) j=MINLOC(buf(1,:),1, ind) k=k+1 k=k+1 buff(:, k)=x(:,j) buff(:, k)=buf(:,j) ind(j)=.FALSE. ind(j)=.FALSE. ENDDO ENDDO y=buff y=buff ... @@ -104,11 +110,12 @@ CONTAINS ... @@ -104,11 +110,12 @@ CONTAINS ELSE ELSE CALL tri(Points_o,Points) CALL tri(Points_o,Points) iLower = 0 iLower = 0 Lower = -HUGE(1._dp) Lower = -HUGE(1._dp) DO i=0,nPoints-1 DO i=0,nPoints-1 DO WHILE(iLower.GE.2.AND.Cross(Lower(:,iLower-2),Lower(:,iLower-1),Points(:,i)).LE.0._dp) DO WHILE(iLower.GE.2.AND.Cross(Lower(:,iLower-2),Lower(:,iLower-1),Points(:,i)).LE.0._dp) Lower(:,iLower) = -HUGE(1.) Lower(:,iLower) = -HUGE(1._dp) iLower = iLower - 1 iLower = iLower - 1 END DO END DO Lower(:,iLower) = Points(:,i) Lower(:,iLower) = Points(:,i) ... @@ -130,7 +137,12 @@ CONTAINS ... @@ -130,7 +137,12 @@ CONTAINS iUpper = iUpper-1 iUpper = iUpper-1 nHull = iLower+iUpper+1 nHull = iLower+iUpper+1 if (ilower+iUpper.gt.size(hull,2)) then print*, mod_name, ilower+iUpper,size(hull,2),Npoints do i=0, Npoints-1 print*, points(:,i) enddo endif ! NOTE: Initialize Hull with zeros ! NOTE: Initialize Hull with zeros Hull = 0._dp Hull = 0._dp ... @@ -139,6 +151,8 @@ CONTAINS ... @@ -139,6 +151,8 @@ CONTAINS Hull(:,iLower:iLower+iUpper-1) = Upper(:,0:iUpper-1) Hull(:,iLower:iLower+iUpper-1) = Upper(:,0:iUpper-1) ! NOTE: save first value twice ! NOTE: save first value twice Hull(:, iLower+iUpper ) = Hull (:,0 ) Hull(:, iLower+iUpper ) = Hull (:,0 ) END IF END IF ... ...
 ... @@ -4,13 +4,16 @@ LIBS = -llapack -lblas ... @@ -4,13 +4,16 @@ LIBS = -llapack -lblas all: test all: test hull.o: hull.f90 dualsimplex.o hull.o: hull.f90 dualsimplex.o precision.o $(FORT)$(CFLAGS) -o hull.o hull.f90 $(FORT)$(CFLAGS) -o hull.o hull.f90 dualsimplex.o: dualsimplex.f90 dualsimplex.o: dualsimplex.f90 precision.o $(FORT)$(CFLAGS) dualsimplex.f90 -o dualsimplex.o $(FORT)$(CFLAGS) dualsimplex.f90 -o dualsimplex.o test: test.f90 dualsimplex.o hull.o test: test.f90 dualsimplex.o hull.o precision.o $(FORT) test.f90 dualsimplex.o hull.o$(LIBS) -o test $(FORT) test.f90 dualsimplex.o hull.o$(LIBS) -o test precision.o: precision.f90 $(FORT)$(CFLAGS) -o precision.o precision.f90 clean: clean: rm -f *.o *.mod delaunayLP generate rm -f *.o *.mod delaunayLP generate
 ... @@ -217,7 +217,7 @@ IF (PRESENT(EPS)) THEN ... @@ -217,7 +217,7 @@ IF (PRESENT(EPS)) THEN IERR = 20; RETURN; END IF IERR = 20; RETURN; END IF EPSL = EPS EPSL = EPS ELSE ! Set the default value. ELSE ! Set the default value. EPSL = EPSILON(0.0_dp) EPSL = tiny(1.0_dp)!EPSILON(0.0_dp) END IF END IF IF (PRESENT(IBUDGET)) THEN IF (PRESENT(IBUDGET)) THEN IF(IBUDGET < 0) THEN ! Must be nonnegative. IF(IBUDGET < 0) THEN ! Must be nonnegative. ... ...
 ... @@ -38,10 +38,10 @@ CONTAINS ... @@ -38,10 +38,10 @@ CONTAINS REAL(dp), DIMENSION(:,:), INTENT(in):: points REAL(dp), DIMENSION(:,:), INTENT(in):: points REAL(dp), DIMENSION(:) , INTENT(in):: x REAL(dp), DIMENSION(:) , INTENT(in):: x INTEGER :: D, N, M,jj INTEGER :: D, N, M,jj integer, save:: compte=0 INTEGER, SAVE:: compte=0 REAL(DP), ALLOCATABLE :: A(:,:), C(:,:) REAL(DP), ALLOCATABLE :: A(:,:), C(:,:) REAL(DP) :: START, FINISH REAL(DP) :: START, FINISH INTEGER, ALLOCATABLE :: BASIS(:), IERR(:) INTEGER, ALLOCATABLE :: BASIS(:), IERR(:) ... @@ -68,19 +68,19 @@ CONTAINS ... @@ -68,19 +68,19 @@ CONTAINS DO I = 1, N DO I = 1, N A(1:D,i)=Points(1:D,I) A(1:D,i)=Points(1:D,I) A(D+1,I) = -1.0_dp A(D+1,I) = -1.0_dp ! A(D+1,I) = 1.0_dp ! A(D+1,I) = 1.0_dp END DO END DO ! A = -A ! A = -A ! Read the interpolation points into the matrix C(:,:). ! Read the interpolation points into the matrix C(:,:). DO I = 1, M DO I = 1, M C(1:D,I)=X(I) C(1:D,I)=X(I) ! C(D+1,I) = 1.0_dp ! C(D+1,I) = 1.0_dp C(D+1,I) = -1.0_dp C(D+1,I) = -1.0_dp END DO END DO ! C = -C ! C = -C ! Compute the interpolation results and time. ! Compute the interpolation results and time. DO I = 1, M DO I = 1, M ... ...
 PROGRAM test PROGRAM test use precision USE hull USE hull IMPLICIT NONE IMPLICIT NONE ! INTEGER, PARAMETER:: R8=SELECTED_REAL_KIND(13) ! INTEGER, PARAMETER:: R8=SELECTED_REAL_KIND(13) REAL(kind=r8), DIMENSION(:,:), ALLOCATABLE:: points REAL(dp), DIMENSION(:,:), ALLOCATABLE:: points REAL(kind=r8), DIMENSION(:), ALLOCATABLE:: x REAL(dp), DIMENSION(:), ALLOCATABLE:: x INTEGER:: D, N INTEGER:: D, N LOGICAL:: is LOGICAL:: is INTEGER :: i INTEGER :: i ... @@ -15,12 +16,12 @@ PROGRAM test ... @@ -15,12 +16,12 @@ PROGRAM test ALLOCATE(Points(D,N),X(D) ) ALLOCATE(Points(D,N),X(D) ) DO i=1, N DO i=1, N WRITE(*,*) "Point #", i WRITE(*,*) "Point #", i READ(*,*) Points(:,i) READ(1,*) Points(:,i) ENDDO ENDDO WRITE(*,*) " Point a tester" WRITE(*,*) " Point a tester" READ(*,*) X READ(2,*) X is=is_in_hull(Points, X) is=is_in_hull_simplex(Points, X) IF (is) THEN IF (is) THEN WRITE(*,*) "nous sommes dans le domaine" WRITE(*,*) "nous sommes dans le domaine" ELSE ELSE ... ...
 ... @@ -89,7 +89,7 @@ MODULE element_class ... @@ -89,7 +89,7 @@ MODULE element_class REAL(dp), DIMENSION(:,:,:), POINTER :: coeff =>Null() ! \int_K phi_i*nabla phi_j for Galerkin REAL(dp), DIMENSION(:,:,:), POINTER :: coeff =>Null() ! \int_K phi_i*nabla phi_j for Galerkin REAL(DP), DIMENSION(:,:), POINTER :: masse=>Null() ! the local mass matrix REAL(DP), DIMENSION(:,:), POINTER :: masse=>Null() ! the local mass matrix real(dp) :: l=1._dp ! B limiter. modified in scheme/scheme8 (bidouille/lim) #ifdef parallel #ifdef parallel INTEGER :: id INTEGER :: id INTEGER :: subMeshId INTEGER :: subMeshId ... ...
 ... @@ -16,7 +16,7 @@ MODULE geom ... @@ -16,7 +16,7 @@ MODULE geom USE param2d USE param2d USE Boundary USE Boundary IMPLICIT NONE IMPLICIT NONE private PRIVATE ! GMSH_ELE(i, j): i = #Ndofs, j = # Verts ! GMSH_ELE(i, j): i = #Ndofs, j = # Verts INTEGER, DIMENSION(31, 2), PARAMETER :: GMSH_ELE = & INTEGER, DIMENSION(31, 2), PARAMETER :: GMSH_ELE = & ... @@ -32,12 +32,16 @@ MODULE geom ... @@ -32,12 +32,16 @@ MODULE geom MODULE PROCEDURE coord_kinetic_new MODULE PROCEDURE coord_kinetic_new END INTERFACE coord_kinetic END INTERFACE coord_kinetic INTERFACE calculateMassMatrLumped INTERFACE calculateMassMatrLumped MODULE PROCEDURE calculateMassMatrLumped_new MODULE PROCEDURE calculateMassMatrLumped_new END INTERFACE calculateMassMatrLumped END INTERFACE calculateMassMatrLumped public:: ReadMeshGMSH2, coord_kinetic, calculateMassMatrLumped INTERFACE voisinage MODULE PROCEDURE voisinage_new END INTERFACE voisinage PUBLIC:: ReadMeshGMSH2, coord_kinetic, calculateMassMatrLumped CONTAINS CONTAINS ... @@ -107,7 +111,7 @@ CONTAINS ... @@ -107,7 +111,7 @@ CONTAINS ALLOCATE (Physname(Nphys)) ALLOCATE (Physname(Nphys)) DO i=1,Nphys DO i=1,Nphys READ(UNIT,*) dummy,idummy,PhysName(idummy) READ(UNIT,*) dummy,idummy,PhysName(idummy) PRINT*, trim(adjustl(physName(idummy))) PRINT*, TRIM(ADJUSTL(physName(idummy))) ENDDO ENDDO READ(UNIT,*) !!$EndPhysicalNames READ(UNIT,*) !!$EndPhysicalNames ... @@ -247,7 +251,7 @@ CONTAINS ... @@ -247,7 +251,7 @@ CONTAINS ALLOCATE(Mesh%e(ii)%base_at_dofs( SIZE(ele(i)%nu), SIZE(ele(i)%nu))) ALLOCATE(Mesh%e(ii)%base_at_dofs( SIZE(ele(i)%nu), SIZE(ele(i)%nu))) ALLOCATE(Mesh%e(ii)%inv_base_at_dofs( SIZE(ele(i)%nu), SIZE(ele(i)%nu))) ALLOCATE(Mesh%e(ii)%inv_base_at_dofs( SIZE(ele(i)%nu), SIZE(ele(i)%nu))) allocate(Mesh%e(ii)%grad_at_dofs(n_dim,SIZE(ele(i)%nu), SIZE(ele(i)%nu))) ALLOCATE(Mesh%e(ii)%grad_at_dofs(n_dim,SIZE(ele(i)%nu), SIZE(ele(i)%nu))) CALL Mesh%e(ii)%base_ref() CALL Mesh%e(ii)%base_ref() CALL Mesh%e(ii)%grad_ref() CALL Mesh%e(ii)%grad_ref() ... @@ -374,8 +378,8 @@ CONTAINS ... @@ -374,8 +378,8 @@ CONTAINS ! MatLumped is the global lumped mass matrix (Fortran) ! MatLumped is the global lumped mass matrix (Fortran) ! MatLumpedInv is its inverse (using Inverse function from algebra.f90) ! MatLumpedInv is its inverse (using Inverse function from algebra.f90) SUBROUTINE calculateMassMatrLumped_old(DATA, Mesh) SUBROUTINE calculateMassMatrLumped_old(DATA, Mesh) implicit none IMPLICIT NONE CHARACTER(LEN = *), PARAMETER :: mod_name = "calculateMassMatrLumped_old" CHARACTER(LEN = *), PARAMETER :: mod_name = "calculateMassMatrLumped_old" TYPE(donnees), INTENT(in) :: DATA TYPE(donnees), INTENT(in) :: DATA TYPE(maillage), INTENT(inout) :: Mesh TYPE(maillage), INTENT(inout) :: Mesh TYPE(element) :: e TYPE(element) :: e ... @@ -420,7 +424,7 @@ CONTAINS ... @@ -420,7 +424,7 @@ CONTAINS SUBROUTINE calculateMassMatrLumped_new(DATA, Mesh) SUBROUTINE calculateMassMatrLumped_new(DATA, Mesh) implicit none IMPLICIT NONE CHARACTER(LEN = *), PARAMETER :: mod_name ="calculateMassMatrLumped_new" CHARACTER(LEN = *), PARAMETER :: mod_name ="calculateMassMatrLumped_new" TYPE(donnees), INTENT(in) :: DATA TYPE(donnees), INTENT(in) :: DATA TYPE(maillage), INTENT(inout) :: Mesh TYPE(maillage), INTENT(inout) :: Mesh ... @@ -495,7 +499,7 @@ CONTAINS ... @@ -495,7 +499,7 @@ CONTAINS END SUBROUTINE volume END SUBROUTINE volume END SUBROUTINE calculateMassMatrLumped_new END SUBROUTINE calculateMassMatrLumped_new SUBROUTINE coord_kinetic_old(Mesh) SUBROUTINE coord_kinetic_old(Mesh) IMPLICIT NONE IMPLICIT NONE CHARACTER(LEN = *), PARAMETER :: mod_name ="coord_kinetic_old" CHARACTER(LEN = *), PARAMETER :: mod_name ="coord_kinetic_old" TYPE(maillage), INTENT(inout):: Mesh TYPE(maillage), INTENT(inout):: Mesh ... @@ -590,29 +594,29 @@ CONTAINS ... @@ -590,29 +594,29 @@ CONTAINS INTEGER :: ndim=2 INTEGER :: ndim=2 vals=0._dp vals=0._dp ! e%nsommet=3,triangle ! e%nsommet=3,triangle VALS(1 ,1,3)=1._qp/6._qp VALS(1 ,1,3)=1._qp/6._qp VALS(2:3,1,3)=1._qp/12._qp VALS(2:3,1,3)=1._qp/12._qp VALS(2 ,2,3)=VALS(1,1,3) VALS(2 ,2,3)=VALS(1,1,3) VALS(1 ,2,3)=VALS(2,1,3) VALS(1 ,2,3)=VALS(2,1,3) VALS(3 ,2,3)=VALS(2,1,3) VALS(3 ,2,3)=VALS(2,1,3) VALS(1:2,3,3)=VALS(2,1,3) VALS(1:2,3,3)=VALS(2,1,3) VALS(3 ,3,3)=VALS(1,1,3) VALS(3 ,3,3)=VALS(1,1,3) ! e%nsommet=6,triangle ! e%nsommet=6,triangle VALS(1,1,6)=1._qp/10._qp VALS(1,1,6)=1._qp/10._qp VALS(2:3,1,6)=1._qp/30._qp VALS(2:3,1,6)=1._qp/30._qp VALS(2,2,6)=VALS(1,1,6) VALS(2,2,6)=VALS(1,1,6) VALS(1,2,6)=VALS(2,1,6) VALS(1,2,6)=VALS(2,1,6) VALS(3,2,6)=VALS(2,1,6) VALS(3,2,6)=VALS(2,1,6) VALS(1:2,3,6)=VALS(2,1,6) VALS(1:2,3,6)=VALS(2,1,6) VALS(3,3,6)=VALS(1,1,6) VALS(3,3,6)=VALS(1,1,6) VALS(3,4,6)=1._qp/30._qp VALS(3,4,6)=1._qp/30._qp VALS(2,5,6)=VALS(3,4,6) VALS(2,5,6)=VALS(3,4,6) VALS(1,6,6)=VALS(3,4,6) VALS(1,6,6)=VALS(3,4,6) VALS(1:2,4,6)=1._qp/15._qp VALS(1:2,4,6)=1._qp/15._qp VALS(2:3,6,6)=1._qp/15._qp VALS(2:3,6,6)=1._qp/15._qp VALS(1,5,6)=1._qp/15._qp VALS(1,5,6)=1._qp/15._qp VALS(3,5,6)=1._qp/15._qp VALS(3,5,6)=1._qp/15._qp !!! !!! ALLOCATE(coords(ndim, Mesh%ndofs)) ALLOCATE(coords(ndim, Mesh%ndofs)) ... @@ -631,7 +635,7 @@ CONTAINS ... @@ -631,7 +635,7 @@ CONTAINS coords(:,e%nu(l))=coords(:,e%nu(l))+ e%yy(:,l) *e%volume coords(:,e%nu(l))=coords(:,e%nu(l))+ e%yy(:,l) *e%volume ENDDO ENDDO CASE(4) ! quadrangle CASE(4) ! quadrangle DO l=1, e%nsommets DO l=1, e%nsommets CALL machin(l,e,z) CALL machin(l,e,z) e%yy(:,l)=z/e%volume e%yy(:,l)=z/e%volume coords(:,e%nu(l))=coords(:,e%nu(l))+ z coords(:,e%nu(l))=coords(:,e%nu(l))+ z ... @@ -673,22 +677,22 @@ CONTAINS ... @@ -673,22 +677,22 @@ CONTAINS REAL(dp), DIMENSION(2) :: z REAL(dp), DIMENSION(2) :: z REAL(dp), DIMENSION(2,2) :: jac REAL(dp), DIMENSION(2,2) :: jac REAL(dp), DIMENSION(2) :: a,b,c REAL(dp), DIMENSION(2) :: a,b,c y(:)=0._dp; vol=0._dp y(:)=0._dp; vol=0._dp DO iq=1, e%nquad DO iq=1, e%nquad x=e%quad(1:2,iq) x=e%quad(1:2,iq) z=e%iso(x) z=e%iso(x) ! a=e%coor(:,2)-e%coor(:,1) ! a=e%coor(:,2)-e%coor(:,1) ! b=e%coor(:,4)-e%coor(:,1) ! b=e%coor(:,4)-e%coor(:,1) ! c=e%coor(:,3)-e%coor(:,2)+e%coor(:,1)-e%coor(:,4) ! c=e%coor(:,3)-e%coor(:,2)+e%coor(:,1)-e%coor(:,4) ! z=e%coor(:,1)+ ( a+c*x(2) )*x(1) + b*x(2) ! location of the point thanks to iso parametric transformation ! z=e%coor(:,1)+ ( a+c*x(2) )*x(1) + b*x(2) ! location of the point thanks to iso parametric transformation ! jac(1,1)=a(1)+x(2)*c(1) ! jac(1,1)=a(1)+x(2)*c(1) ! Jac(1,2)=b(1)+x(1)*c(1) ! Jac(1,2)=b(1)+x(1)*c(1) ! Jac(2,1)=a(2)+x(2)*c(2) ! Jac(2,1)=a(2)+x(2)*c(2) ! Jac(2,2)=b(2)+x(1)*c(2) ! Jac(2,2)=b(2)+x(1)*c(2) Jac=e%d_iso(x) Jac=e%d_iso(x) det=ABS( Jac(1,1)*Jac(2,2) - Jac(1,2)*Jac(2,1) ) det=ABS( Jac(1,1)*Jac(2,2) - Jac(1,2)*Jac(2,1) ) phi=e%base(l,x(1:2)) phi=e%base(l,x(1:2)) ... @@ -697,13 +701,13 @@ Jac=e%d_iso(x) ... @@ -697,13 +701,13 @@ Jac=e%d_iso(x) ENDDO ENDDO END SUBROUTINE machin END SUBROUTINE machin END SUBROUTINE coord_kinetic_new END SUBROUTINE coord_kinetic_new SUBROUTINE coord_kinetic_ent(Mesh) SUBROUTINE coord_kinetic_ent(Mesh) IMPLICIT NONE IMPLICIT NONE CHARACTER(LEN = *), PARAMETER :: mod_name ="coord_kinetic entropy" CHARACTER(LEN = *), PARAMETER :: mod_name ="coord_kinetic entropy" ... @@ -712,24 +716,65 @@ Jac=e%d_iso(x) ... @@ -712,24 +716,65 @@ Jac=e%d_iso(x) END SUBROUTINE coord_kinetic_ent END SUBROUTINE coord_kinetic_ent SUBROUTINE voisinage(Mesh) SUBROUTINE voisinage_old(Mesh) IMPLICIT NONE CHARACTER(LEN = *), PARAMETER :: mod_name = "voisinage_old" TYPE(Maillage), INTENT(inout):: mesh TYPE(element):: e INTEGER:: jt, k, is INTEGER, DIMENSION(:), ALLOCATABLE:: is2jt, compte ALLOCATE(is2jt(Mesh%ns), compte(Mesh%ns) ) is2jt=0 compte=0 DO jt=1, Mesh%nt e=Mesh%e(jt) DO k=1, e%nvertex!sommets is2jt(e%nu(k))=is2jt(e%nu(k))+1 ! number of element that contain the vertex is ENDDO ENDDO ALLOCATE (Mesh%vois(Mesh%ns))!dofs) ) DO is=1, Mesh%ns!dofs ALLOCATE(Mesh%vois(is)%nvois(is2jt(is)), Mesh%vois(is)%loc(is2jt(is)) ) Mesh%vois(is)%nvois=0 ENDDO DO jt=1, Mesh%nt e=Mesh%e(jt) DO k=1, e%nvertex!sommets compte(e%nu(k))=compte(e%nu(k))+1 mesh%vois( e%nu(k) )%nvois( compte(e%nu(k)) )=jt ! index of the element that contains e%nu(k)<->is mesh%vois( e%nu(k) )%loc( compte(e%nu(k)) )=k ! in that element is=e%nu(k) is number k ENDDO ENDDO DO is=1, Mesh%ns!dofs mesh%vois(is)%nbre=SIZE(Mesh%vois(is)%nvois) ! how many element contain is ENDDO DEALLOCATE(compte, is2jt) END SUBROUTINE voisinage_old SUBROUTINE voisinage_new(Mesh) IMPLICIT NONE IMPLICIT NONE CHARACTER(LEN = *), PARAMETER :: mod_name = "voisinage" CHARACTER(LEN = *), PARAMETER :: mod_name = "voisinage_new" TYPE(Maillage), INTENT(inout):: mesh TYPE(Maillage), INTENT(inout):: mesh type(element):: e TYPE(element):: e INTEGER:: jt, k, is INTEGER:: jt, k, is integer, dimension(:), allocatable:: is2jt, compte INTEGER, DIMENSION(:), ALLOCATABLE:: is2jt, compte ALLOCATE(is2jt(Mesh%ns), compte(Mesh%ns) ) ALLOCATE(is2jt(Mesh%ns), compte(Mesh%ns) ) is2jt=0 is2jt=0 compte=0 compte=0 DO jt=1, Mesh%nt DO jt=1, Mesh%nt e=Mesh%e(jt) e=Mesh%e(jt) DO k=1, e%nvertex!sommets DO k=1, e%nvertex!sommets is2jt(e%nu(k))=is2jt(e%nu(k))+1 is2jt(e%nu(k))=is2jt(e%nu(k))+1 ! number of element that contain the vertex is ENDDO ENDDO ENDDO ENDDO allocate (Mesh%vois(Mesh%ns))!dofs) ) ALLOCATE (Mesh%vois(Mesh%ns))!dofs) ) DO is=1, Mesh%ns!dofs DO is=1, Mesh%ns!dofs ALLOCATE(Mesh%vois(is)%nvois(is2jt(is)), Mesh%vois(is)%loc(is2jt(is)) ) ALLOCATE(Mesh%vois(is)%nvois(is2jt(is)), Mesh%vois(is)%loc(is2jt(is)) ) Mesh%vois(is)%nvois=0 Mesh%vois(is)%nvois=0 ... @@ -741,16 +786,16 @@ Jac=e%d_iso(x) ... @@ -741,16 +786,16 @@ Jac=e%d_iso(x) DO k=1, e%nvertex!sommets DO k=1, e%nvertex!sommets compte(e%nu(k))=compte(e%nu(k))+1 compte(e%nu(k))=compte(e%nu(k))+1