Commit 216aa3ea authored by rabgra's avatar rabgra
Browse files

Merge branch 'master' of git.math.uzh.ch:remi.abgrall/RD_public

parents 9313e4fa 464b00ab
bin1D/
mod1D/
obj1D/
bin2D/
mod2D/
obj2D/
bin2D.2/
mod2D.2/
obj2D.2/
*.plt
*.err
fort.[0-9]
*.dat
*.sol
*.pdfa
# Residual Distribution high order code
Authors: R. Abgrall, P. Bacigaluppi, P. Öffner, S. Tokareva, D. Torlo and F. Mojarrad
Corresponding email: remi.abgrall@math.uzh.ch
## Features
* Residual distribution as discretization technique
* Deferred correction for high order accurate time integration
* Models: linear transport, Burgers, wave equation, shallow water, Euler
* 2D and 1D
* Order of accuracy from 2 to 4 (2D) and order 5 (1D)
* 2D meshes can be triangular, quadrilateral and hybrid
* Mood a posteriori limiter to guarantee physical constraints
* Extra conservation constraints imposible (entropy/kinetic energy/momentum)
**Warning**: works for Euler, the other models need to be checked.
### Compilation
Makefile in `Make/Makefile_2D.gfortran`. Uses `gfortran`
```
make -f Make//Makefile_2D.gfortran dec
make -f Make/Makefile_2D.gfortran clean
```
Note:`LIBS=-L/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib` for mac
### Meshes
How to generate compatible meshes with gmsh:
```
gmsh format msh2: gmsh -format msh2 geofile.geo
```
### How to run a test
In the Makefile the tests should match (variable_def, boundary, init_bc), example:
test case: see Boundary_euler and init_bc_euler (they should be consistant).
### Reference:
1. R. Abgrall, J. Nordström, P. Öffner and S. Tokareva, Analysis of the SBP-SAT stabilisation for finite element methods, part II: the non-linear case, Communications in Applied Mathematics and Computation, 2021, DOI: \url{10.1007/s42967-020-00086-2}
1. R. Abgrall, J. Nordström, P. Öffner and S. Tokareva, Analysis of the SBP-SAT stabilisation for finite element methods, part I: the linear case, J. Sci. Comput. 85 (2020), no. 2, Paper No. 43.
1. R. Abgrall and D. Torlo, High Order Asymptotic Preserving Deferred Correction Implicit-Explicit Schemes for Kinetic Models, SIAM SISC, 2020, v42(3), pp B816-845, https://arxiv.org/abs/1811.09284
1. R. Abgrall, A general framework to construct schemes satisfying additional conservation relations, application to entropy conservative and entropy dissipative schemes, J. Comput. Phys, vol 372(1), 2018
1. R. Abgrall, P. Bacigaluppi and S. Tokareva, High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics, Computer \& Mathematics with Applications, 2019, vol 78 (2), pages 274-297
1. R. Abgrall, Some remarks about conservation for residual distribution schemes, Computational Methods in Applied Mathematics, v18(3), pp 327-350, 2018, doi: https://doi.org/10.1515/cmam-2017-0056
1. R. Abgrall, P. Bacigaluppi and S. Tokareva, A high-order nonconservative approach for hyperbolic equations in fluid dynamics, Computers and Fluids, vol 169, pages 10-22, 2018
doi: https://doi.org/10.1016/j.compfluid.2017.08.019
1. R. Abgrall, High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices., Journal of Scientific Computing, 73(2-3), pp 461-494, 2017
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment