ReadMe.tex.bak 2.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
\documentclass{article}
\usepackage{fullpage,url}
\begin{document}
\title{Euler code, using Residual distribution scheme, unsteady, order 2,3,4 in time/space and hybrid meshes. Uses Mood technology, and compatible with additional conservation laws (Kinetic momentum for example)}
\author{R. Abgrall, P. Bacigaluppi, P. Oeffner, S. Tokareva, D. Torlo
F. Mojarrad\\
remi.abgrall@math.uzh.ch}
\date{}
\maketitle

Warning: works for Euler, the other models need to be checked.
\section{Compilation}
Makefile in Make/Makefile\_2D.gfortran. Uses gfortran
\begin{verbatim}
\make -f Make//Makefile_2D.gfortran dec
\end{verbatim}

\begin{verbatim}
\make -f Make/Makefile_2D.gfortran clean
\end{verbatim}

Note:LIBS=-L/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib for mac

\section{Meshes}
gmsh format msh2: gmsh -format msh2 geofile.geo

\section{Run}
test case: see Boundary\_euler and init\_bc\_euler (they should be consistant). 

\section{Reference:}
\begin{itemize}
\item R. Abgrall, J. Nordstr\"om, P. \"Offner and S. Tokareva, Analysis of the SBP-SAT stabilisation for finite element methods, part II: the non-linear case, Communications in Applied Mathematics and Computation, 2021, DOI: \url{10.1007/s42967-020-00086-2}
\item R. Abgrall, J. Nordstr\"om, P. \"Offner and S. Tokareva, Analysis of the SBP-SAT stabilisation for finite element methods, part I: the linear case, R. Abgrall, J. Nordstr\"om, P. \"Offner and S. Tokareva, Analysis of the SBP-SAT stabilisation for finite element methods, part I: the linear case,  J. Sci. Comput. 85 (2020), no. 2, Paper No. 43.
\item R. Abgrall and D. Torlo, High Order Asymptotic Preserving Deferred Correction Implicit-Explicit Schemes for Kinetic Models,  SIAM SISC, 2020,  v42(3), pp B816-845, \url{https://arxiv.org/abs/1811.09284}

\item R. Abgrall, A general framework to construct schemes satisfying additional conservation relations, application to entropy conservative  and entropy dissipative schemes, J. Comput. Phys, vol 372(1), 2018

\item R. Abgrall, P. Bacigaluppi and S. Tokareva, High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics, Computer \& Mathematics with Applications, 2019, vol 78 (2), pages  274-297
\item R. Abgrall, Some remarks about conservation for residual distribution schemes, Computational Methods in Applied Mathematics, v18(3), pp 327-350, 2018, doi:\url{https://doi.org/10.1515/cmam-2017-0056}
\item R. Abgrall, P. Bacigaluppi and S. Tokareva, A high-order nonconservative approach for hyperbolic equations in fluid dynamics, Computers and Fluids, vol 169, pages 10-22, 2018
 doi: \url{https://doi.org/10.1016/j.compfluid.2017.08.019}
\item R. Abgrall, High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices., Journal of Scientific Computing, 73(2-3), pp 461-494, 2017
\end{itemize}
\end{document}